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Summary

 ExB shear flow calculated from force-balance equation 
with increasing toroidal rotation as an additional control

 stabilizes the high-n peeling-ballooning modes with only a few 
low-n modes unstable

 the highest unstable mode number n is inversely 
proportional to the toroidal rotation speed

 increases the fluctuation levels

 reduces size of pedestal collapses

 The overall characteristics is consistent with observation of 
quiescent H-Mode discharges in DIII-D with edge rotation ranging 
from strong counter to strong co-rotation



The basic set of equations for the MHD peeling-ballooning modes
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After gyroviscous cancellation,

the diamagnetic drift modifies 

the vorticity and additional 

nonlinear terms

Using force balance and 

toroidal rotation as a control 

knob

Er0=(1/NiZieB)┴P0-vq0Bj-vj0Bq

Using resistive MHD term, 

resistivity can renormalized 

as Lundquist Number

slund=(hB0/m0)(tA/R0
2)

Non-ideal physics

Parallel velocity

V||0=vqBq/B+vjBj/B



Linear growth rate of BOUT++ and ELITE

In order to get correct instability threshold at low-n, a filtering 
technique has to be used to simulate a linear mode at a time



ExB shear flow calculated from force-balance equation with increasing 

toroidal rotation stabilizes the high-n peeling-ballooning modes

(Pi =Pe =0.5P), cbm18_dens6

In order to get correct instability threshold at low-n, a filtering 
technique has to be used to simulate a linear mode at a time

Er0=(1/NiZieB)┴P0-vj0Bq

vq00, 

v||0 vj0Bj/B~vj0, 

Doppler shift for vj0=const.

The highest unstable mode number n is inversely proportional to the toroidal rotation speed



ExB shear flow calculated from force-balance equation with increasing toroidal rotation 

reduces 
size of pedestal collapses and maintains high fluctuation level

(Pi =Pe =0.5P), cbm18_dens6

Normalized y Time (R/vA) 

<20dp/B2>rms(y0.927,qqmid<20(P0+dp)/B2>q

vj0=0
vj0=0.01vA
vj0=0.02vA

t=0
vj0=0
vj0=0.01vA
vj0=0.02vA

Lundquist Number s = 1x105



Summary

 ExB shear flow calculated from force-balance equation 
with increasing toroidal rotation as an additional control

 stabilizes the high-n peeling-ballooning modes with only a few 
low-n modes unstable

 the highest unstable mode number n is inversely 
proportional to the toroidal rotation speed

 increases the fluctuation levels

 reduces size of pedestal collapses

 The unstable spectrum is consistent with observation of quiescent 
H-Mode discharges in DIII-D with edge rotation ranging from 
strong counter to strong co-rotation


